Dougall’s bilateral $_{2}H_{2}$-series and Ramanujan-like $\pi$-formulae

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramanujan-Sato-Like Series

Using the theory of Calabi–Yau differential equations we obtain all the parameters of Ramanujan–Sato-like series for 1/π2 as q-functions valid in the complex plane. Then we use these q-functions together with a conjecture to find new examples of series of non-hypergeometric type. To motivate our theory we begin with the simpler case of Ramanujan–Sato series for 1/π .

متن کامل

Ramanujan and Pi

This contribution highlights the progress made regarding Ramanujan’s work on Pi since the centennial of his birth in 1987.

متن کامل

Ramanujan-type formulae and irrationality measures of some multiples of $\pi$

An explicit construction of simultaneous Padé approximations for generalized hypergeometric series and formulae for the quantities π √ d , d∈{1, 2, 3, 10005}, in terms of these series are used for estimates of irrationality measures of these multiples of π. Other possible applications are also discussed. Bibliography: 14 titles. Introduction An important role in the history of the Archimedes co...

متن کامل

Ramanujan Series Upside-down

We prove that there is a correspondence between Ramanujan-type formulas for 1/π and formulas for Dirichlet L-values. Our method also allows us to reduce certain values of the Epstein zeta function to rapidly converging hypergeometric functions. The Epstein zeta functions were previously studied by Glasser and Zucker.

متن کامل

Ramanujan Series for Arithmetical Functions

We give a short survey of old and new results in the theory of Ramanujan expansions for arithmetical functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2011

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-2011-02474-9